设k= n(n+1)/3, 当n≠1(mod 3)且为正整数时, k总是正整数
要证明
3n^(n^2+n+1)≡2n^3 + 3n^2 + 6n + 1 (mod (n^2+n+1)^3)
相当于证明
3n (n^(n^2+n)-1) ≡ 2n^3 + 3n^2 + 3n + 1 = (2n+1)(n^2+n+1) (mod (n^2+n+1)^3)
由于n^2+n是3的整数倍, 所以(n^(n^2+n)-1)/(n^3-1)是整数, 因此只要证明
3n(n-1)*(n^(n^2+n)-1)/(n^3-1) ≡ 2n+1 (mod (n^2+n+1)^2)
其中
(n^(n^2+n)-1)/(n^3-1) = ∑n^(3i) (0≤i≤k-1)
要证的结果等价于
3n(n-1)*∑n^(3i) ≡ 2n+1 (mod (n^2+n+1)^2)
可化为
3n(n-1)*(n^3-1)*∑(n^(3i)-1)/(n^3-1) ≡ 2n+1-3kn(n-1) (mod (n^2+n+1)^2)
由于 2n+1-3kn(n-1) = -(n^2+n+1)(n^2-n-1), 所以等价于
3n(n-1)(n-1)*∑(n^(3i)-1)/(n^3-1) ≡ -(n^2-n-1) (mod n^2+n+1)
因为当i≥1时
(n^(3i)-1)/(n^3-1) = ∑n^(3j) (0≤j≤i-1) ≡ i (mod n^3-1)
并且当i=0时上式也成立, 所以要证的式子等价于
3n(n-1)(n-1)*∑i ≡ -(n^2-n-1) (mod n^2+n+1)
上式左边等于
3n(n-1)(n-1)*k(k-1)/2 = n(n-1)(n-1)n(n+1)(k-1)/2
≡-3(n+1)(k-1)/2
≡-(n+1)(n^2+n-3)/2
≡2(n+1)(mod n^2+n+1)
(最后一步是因为n^2+n+1是奇数)
右边 -(n^2-n-1)≡ 2(n+1)(mod n^2+n+1)
所以要证明的结论是对的